Jede Gerade, die nicht parallel zur y-Achse ist, ist der Graph einer linearen Funktion
- ,
wobei und reelle Zahlen sind. Die zugehörige Geradengleichung lautet dann
- .
Die Parameter und der Geradengleichung haben eine geometrische Bedeutung. Die Zahl ist die Steigung der Geraden und entspricht der senkrechten Kathete des Steigungsdreiecks, dessen waagrechte Kathete die Länge aufweist. Die Zahl ist der y-Achsenabschnitt, das heißt die Gerade schneidet die y-Achse im Punkt . Ist , so verläuft die Gerade als Ursprungsgerade durch den Koordinatenursprung und die zugehörige Funktion ist dann eine Proportionalität. Die Gerade mit der Gleichung erhält man aus der Geraden mit der Gleichung , indem sie um in Richtung der y-Achse verschoben wird. Diese Verschiebung erfolgt nach oben, wenn positiv ist, und nach unten, wenn negativ ist.
Geraden, die parallel zur y-Achse verlaufen, sind keine Funktionsgraphen. Sie lassen sich durch eine Gleichung der Form
darstellen, wobei eine reelle Zahl ist. Eine solche Gerade schneidet die x-Achse im Punkt .
Zwei Punkte Form
Darstellung
In der Zweipunkteform wird eine Gerade in der Ebene, die durch die beiden verschiedenen Punkte und verläuft, als die Menge derjenigen Punkte beschrieben, deren Koordinaten die Gleichung
erfüllen. Hierbei müssen und verschieden sein und darf nicht gleich gewählt werden. Wird die Geradengleichung nach aufgelöst, erhält man die explizite Darstellung
- ,
die auch für verwendet werden kann. Ohne Einschränkung gültig ist die Darstellung
- .
Beispiel
Sind beispielsweise die beiden gegebenen Geradenpunkte und , so erhält man als Geradengleichung
oder aufgelöst nach
beziehungsweise
- .