Bestimmtes und unbestimmtes Integral

In diesem Artikel werden die Begriffe 'bestimmtes Integral' und 'unbestimmtes Integral' erklärt. Damit soll auch der Unterschied zwischen den beiden Begriffen verstanden werden.
Ein unbestimmtes Integral ist durch die Stammfunktion einer Funktion \(f\) gegeben. Für das unbestimmte Integral verwendet man die Schreibweise \[\int f(x) dx.\] Ein bestimmtes Integral ist durch die Flächenberechnung zwischen einer Funktion \(f\) und der \(x\)-Achse gegeben. Für das bestimmte Integral verwendet man die Schreibweise \[\int_a^b f(x) dx.\] Dabei nennt man \(a\) die untere Integrationsgrenze und \(b\) die obere Integrationsgrenze. Ist die Stammfunktion \(F\) bekannt, so gilt \[\int_a^b f(x) dx=F(b)-F(a).\]
Es ist \(F(x)=x^2+c\) eine Stammfunktion von \(f(x)=2x\), da \(F'=f\) ist. Damit ist das unbestimmte Integral \(\int f(x)dx=\int 2xdx+c=x^2+c\).
Es ist \(f(x)=2x\). Das bestimmte Integral \(\int_2^5 f(x)dx=\int_2^5 2xdx=F(5)-F(2)=5^2-2^2=25-4=21\).
Es ist \(g(x)=3x^2\). Das unbestimmte Integral lautet \(G(x)=\int g(x)dx+c=x^3+c\). Das bestimmte Integral \(\int_0^1 g(x)dx=\int_0^1 g(x)dx=G(1)-G(0)=1^3-0^3=1\).

Weiterführende Artikel:
Hat alles, was man braucht: Taschenrechner CASIO FX-991DE X *
Die mit Sternchen (*) gekennzeichneten Verweise sind sogenannte Provisions-Links. Für dich entstehen dabei keine Nachteile!