Der grafische Zusammenhang zwischen einer differenzierbaren Funktion \(f\) und ihrer Ableitungsfunktion \(f'\) ist über die Steigung der Funktion \(f\) gegeben.
Ein typisch charakteristischer Zusammenhang ist durch jene Stellen einer differenzierbaren Funktion gegeben, an denen die Steigung Null ist. An diesen Stellen hat dann die Ableitungsfunktion eine Nullstelle.
Es sei \({\color{red}{f(x)=2+(a^2-x^2)^2}}\). Die Ableitungsfunktion lautet \({\color{blue}{f'(x)=2x(a^2-x^2)}}\). Der Funktionsgraph der Funktion \(f\) und der Funktionsgraph der zugehörigen Ableitungsfunktion \(f'\) sind in der folgenden Grafik dargestellt, wo man den Parameter \(a\) mit dem Schieberegler variieren/verändern kann, um zu sehen, wie sich die Nullstellen der Ableitungsfunktion verhalten.